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Kinetic modeling of particles in stratified flow – Evaluation
of dispersion tensors in inhomogeneous turbulence
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Abstract

The continuum equations for a dilute particle distribution in inhomogeneous turbulence are tested against results from
a Langevin particle tracking simulation. Reeks’ version of the kinetic theory is used to generate the mass, momentum and
kinetic stress equations for the particle distribution. The particle tracking data are used to directly evaluate the dispersion
tensors k and l which serve as closure relations for the continuum equations. These exact forms are compared to approx-
imate, local forms. Even for low Stokes numbers (corresponding to low particle inertia defined by s/sp� 1), the tensor k is
strongly affected by the inhomogeneity and depends on turbulence parameters in the volume corresponding to the particle
path dispersion over the particle Lagrangian integral timescale s. In contrast, the locally homogeneous form of the velocity
dispersion tensor l is a sufficient approximation, since it depends on the dispersion volume over the much smaller particle
relaxation time sp. It is demonstrated that the body force due to the dispersion vector c cannot be neglected. In the limit of
passive tracers (zero stopping distance), c is equal to the gradient of k, if the physical setting is such that we can invoke
constant tracer density in this limit.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In flows of particulate suspensions, sufficiently general physical models for the fluid–particle mixture are
essential. For example, deposition rates near boundary layers and particle transport within the bulk of the car-
rier fluid may depend strongly on turbulence inhomogeneity, and one would therefore prefer a model which can
handle the associated effects on the particle concentration and the particle kinetic stress. Kinetic theories for
dilute suspensions (e.g., Reeks, 1992, 2005; Swailes and Darbyshire, 1999; Hyland et al., 1999; Sergeev et al.,
2002; Zaichik and Alipchenkov, 2005) are sufficiently general such that turbulence inhomogeneity is accounted
for in a consistent manner. A common factor in these theories is that they are formulated in terms of a conser-
vation equation for the particle probability distribution function (PDF). The PDF itself is a function of time,
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space and particle velocity. The governing equation is the Liouville equation – a generalization of the Fokker–
Planck equation for Brownian motion, to handle a non-zero correlation time of the turbulent driving force. The
Liouville equation also shares similarities with the classical Boltzmann equation, with the replacement of the
Boltzmann collision term with the particle-turbulence momentum transfer term (for a dilute flow). The kinetic
approach can also handle a variety of wall boundary conditions, such as reflecting or partially reflecting walls,
which the traditional two-fluid approach cannot do (e.g., Swailes and Reeks, 1994).

We will in the following work with the set of continuum equations which govern the velocity moments of
the PDF (mass, momentum and kinetic stress). Physical models for solid particles, droplets and bubbles in
turbulent pipe flow, are examples where kinetic theory may be considered as a foundation. A great advantage
is the non-phenomenological character of the continuum equations, with consistency from the particle equation
of motion to quantities such as concentration profiles. The two basic assumptions in the theory are: (a) The
turbulent velocity fluctuations in the carrier phase as seen by the particles obey Gaussian statistics (for the
purpose of obtaining exact dispersion tensor closure relations) and (b) The particle equation of motion adopts
a driving force which is linear in the velocity difference between the particle and the carrier fluid (transversal
lift forces may be included in the same framework). The corresponding drag coefficient b is assumed to be a
constant. For non-linear drag one can perform a linearization procedure such that b becomes a function of the
relative mean velocity between the particles and the fluid (e.g., Reeks, 1992). We also note that the background
turbulence is considered as input to the model. When the suspension is dense such that back reaction on the
turbulence is important, one has to model this effect in addition.

The central point of the current paper is to evaluate the dispersion tensors, with particular focus on the
kinetic theory of Reeks (1992). These dispersion tensors are in effect closure relations entering in the contin-
uum equations. The dispersion tensors can be expressed in terms of fluid velocity correlation functions as mea-
sured along the paths of the massive particles. There have been very few or no published attempts to derive
explicit forms of the dispersion tensors in inhomogeneous turbulence (except to a certain degree in Devenish
et al., 1999) which are more general than adopting the locally homogeneous approximation (LHA). It is there-
fore both interesting and desirable to find dispersion tensor approximations which are more applicable to
inhomogeneous turbulence such that kinetic theory (KT) can be applied to a wider range of problems.

We will evaluate the kinetic theory by using data from a particle tracking simulation (PT) which follows
individual particles via the equation of motion. The essential feature of the PT-approach is that the turbulent
fluid velocity seen by the particle is modeled by a stochastic Langevin differential equation with a white noise
source and a memory characterized by a local correlation timescale s (Thomson, 1984; Iliopoulos and Hanr-
atty, 1999 or Mito and Hanratty, 2005). The Langevin equation will be valid as long as we can generate the
correct statistics of the turbulent driving force (or fluid velocity) following the particle. Thomson (1984) has
shown that a drift term must be included in the Langevin equation to counteract the associated ‘‘spurious
drift’’ which occurs in inhomogeneous turbulence. The PT data will be treated as the reference data set which
are to be modeled by the mass, momentum and kinetic stress equations, and we will test the applicability of the
LHA dispersion tensors, and the PT-evaluated ‘‘exact’’ dispersion tensors.

Section 2 reviews the kinetic theory and the method of particle tracking. The dispersion tensors and the
kinetic model are evaluated in Section 3 by comparison to PT-data. Section 4 discusses the mass flux balance
from kinetic theory in relation to the work of Mito and Hanratty (2005). The discussion and conclusions are
presented in Section 5.

2. Physical framework and models

This section gives a brief summary of the meaning of the kinetic theory, the continuum equations and the dis-
persion tensors. The solution of the equations is presented for the 1D steady state case. The Langevin particle
tracking method is summarized and the specific physical setting for the numerical experiment to follow is specified.

2.1. The Liouville PDF equation for the particles

Reeks’ (1992, 1993) continuum model for particles in a turbulent fluid will be adopted in the following. This
theory is founded on a linear particle equation of motion,
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Dv

Dt
¼ F=mp ¼ b � ðu� vÞ þ 1� qc

qp

 !
g;
where u is the fluid velocity, v the particle velocity and b is a tensor accounting for lift and drag. The drag
coefficients are represented by the diagonal components of the tensor. This linearized form is a first order
approximation to the generally non-linear hydrodynamic forces exerted on the particle. The material densities
of the carrier fluid and the particle are qc and qp, respectively. We will in the following assume dense particles
in the sense qc/qp� 1, giving
Dv

Dt
¼ �b � vþ hfi þ f 0 þ g; ð1Þ
where the fluctuating force due to turbulence is f 0 = b Æ u 0, and the average force is hfi = b Æ hui. For a collision-
less ‘‘particle gas’’, the ensemble averaged Liouville equation over all realizations of the gas turbulence (f 0) is
½@t þ v � rx þrv � ð�b � vþ hfi þ gÞ�hW i ¼ �rv � hf 0W i; ð2Þ
where the phase space ‘‘diffusion current’’ is
j ¼ hf 0W i ð3Þ
and where W = W(x,v, t) is the phase space distribution function corresponding to a single realization of f 0.
The diffusion current serves to modify the distribution function according to the turbulent forcing on the
particles.

The main advantage with working in phase space is that there exists an exact closure for the diffusion cur-
rent in terms of hWi, provided that Gaussian statistics can be assumed for f 0. The closure relation is, when
written out in component form (Reeks, 1992; Hyland et al., 1999)
jk ¼ �ð@vjljk þ @xjkjk þ ckÞhW i; ð4Þ
where the dispersion tensors are lij, kij and cj. The first two dispersion tensors account for the broadening or
diffusion of the distribution function along the velocity and space axes, respectively. In particular, in the limit
of passive tracer particles (limit of zero inertia), kij is proportional to the passive scalar diffusivity character-
izing the carrier fluid. The dispersion vector cj represents a drift speed along the velocity axis which corre-
sponds to an additional particle acceleration due to inhomogeneity of the turbulence. In later versions of
the theory (Reeks, 2001, 2005), the dispersion tensors are defined in a slightly different manner. The drift term
due to cj is then expressed in terms of the divergence of the particle velocity field, which in the limit of passive
tracer particles in an incompressible fluid vanishes automatically. We will enforce this limiting behavior in the
1992-version of the theory by properly constraining the drift term, as shown in the PSA-approximation below.

The dispersion tensors depend on the fluid turbulence in the following manner:
ljk ¼ hDvjðx; v; tÞf 0kðx; tÞi;
kjk ¼ hDxjðx; v; tÞf 0kðx; tÞi;
ck ¼ �hDxjðx; v; tÞ@xj f

0
kðx; tÞi:
These relations are general, valid also in inhomogeneous turbulence. The quantities Dx and Dv are position
and velocity changes due to f 0 along a particle trajectory. The relations between the force and the displace-
ments are described by the appropriate Green’s function (impulse response) of the particle equation of motion.
This is described in more detail below for the 1D case. The particle trajectory intersects (x,v) at time t in phase
space (and starts at an earlier time t1). The ensemble average (angle brackets) are taken over all such trajec-
tories intersecting (x,v) at time t. The initial conditions define a subset of all possible trajectories.

2.2. Continuum equations in 1D stratified flow

The continuum equations are derived, as usual, by taking velocity moments of the governing PDF equa-
tion. The first three moments of the Liouville equation generates the mass, momentum and kinetic stress



Fig. 1. Channel geometry. Gravity acts in the wall normal z-direction, and the mean fluid flow is parallel to the walls (in the x-direction).
The flow is fully developed such that all physical quantities vary only in the z-direction, making the problem one-dimensional. The wall has
a no-slip boundary condition for the fluid, such that the standard channel flow fluid turbulence statistics can be used. For the PT-
simulation, the particles are absorbed and then re-injected with the friction velocity at the walls. The continuum equation boundary
conditions for the particles are given at two interior locations, with stress and density values taken from the PT-simulation.
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equations for the particles. The kinetic stress equation is supplied with a closure relation for the energy flux in
order to limit the number of equations.1

In the current case, we will restrict ourselves to 1D geometry which is appropriate for a stratified, turbulent,
steady state flow. Consider an infinite channel between two horizontal boundaries where the mean fluid veloc-
ity is parallel to the boundaries and possesses a shear. Gravity acts in the vertical direction (z) perpendicular to
the boundaries. See Fig. 1. The fluid turbulence is assumed to be stationary (fully developed) and not affected
by the presence of the particles. The turbulence intensities, stress, etc. can then be considered as given input
parameters, varying only in the vertical direction. Lift forces are neglected such that a diagonal isotropic drag
tensor bij = dijb is imposed, where b�1 = sp is the particle relaxation time. The equations for vertical and hor-
izontal momentum then become decoupled such that only the vertical component of the normal stress is
needed. The corresponding 1D continuum equations read
1 A s
space P
@tqþ @zðq�vzÞ ¼ 0; ð5Þ
@tðq�vzÞ þ @zðq�v2

z þ T zzÞ ¼ �qðb�vz þ g þ �czÞ; ð6Þ
@tðqEzÞ þ @zðqEz�vzÞ ¼ �2bqEz þ @zðq�zz@zEzÞ � T zz@zvz þ q�lzz: ð7Þ
Overbars denote particle density weighted averages (the average of the particular quantity over all particle
velocities at z) defined by the distribution hWi. The mean particle velocity is �vz and the average particle density
is q (skipping the overbar). In the literature regarding particles in turbulence, the density q of particles is often
referred to as the concentration.

The (z,z) component of the particle stress tensor is
T zz ¼ qð2Ez þ �kzzÞ: ð8Þ
We note that the associated particle pressure is
P ¼ 1=3ðT xx þ T yy þ T zzÞ: ð9Þ
The contribution to the specific kinetic energy from normal stress is
Ez ¼ ð1=2Þv0zv0z ð10Þ
imilar procedure can be used to derive the Navier–Stokes equations, but then with the Boltzmann equation as the governing phase
DF equation.
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and the (z,z) component of the diffusion tensor is generally
�zz ¼ T zz=ðqbÞ: ð11Þ
In general, the dispersion coefficient �ij has two contributions, the dispersion induced by the mean shear in the
flow, and the dispersion induced by turbulence (Section 2.4). It can be shown that the shear contribution is
zero for the wall normal component �zz in homogeneous flows when the mean flow is parallel to the walls.
We will assume that the shear contribution to �zz vanishes also in the case for inhomogeneous flows, such that
�zz may be regarded as a (non-local) turbulent particle diffusivity in the following.

The continuity equation (5) is in the familiar form. The right hand side of the momentum equation (6) has a
friction term linear in b, and a momentum source or net body force �q�cz due to turbulence. This turbulent
force is non-zero in inhomogeneous turbulence and must therefore be accounted for in most flow situations.
Note that this body force is only contained in the momentum equation. One can recast the momentum equa-
tion as a generalized diffusion equation expressing the contributions to the mass flux q�vz. The associated mass
flux balance will be discussed in Section 4.

The right hand side terms in the kinetic stress equation (7) are, respectively, viscous dissipation due to drag
against the background gas, divergence of the turbulent energy flux, ‘‘P-dV work’’ (expansion or compression
work) and finally a source �l due to the turbulent forcing of the particles. It is interesting to see that the stress
equation is similar to a normal single phase gas energy conservation equation. The new features are the dis-
sipative drag term and the turbulent source – both reflecting the interaction with the background fluid. In
homogeneous stationary turbulence, the kinetic stress equation simply reduces to a statement of local balance
between the dissipation and turbulent source from which Ez follows. In inhomogeneous turbulence with zero
mean velocity (as we will encounter below), we get an additional contribution from the energy flux divergence
which gives non-local coupling. The particular form of the energy flux, Fz = �q�zzozEz, is a consequence of the
Chapman–Enskog closure relation applied to the associated triple velocity correlation (e.g., Swailes et al.,
1998). We also note that the energy flux is non-linear in the kinetic stress.

2.3. Stationary solution with zero mass flux normal to the boundaries

We will in the following consider a stationary situation in which the particle distribution and fluid turbu-
lence is fully developed and where the net mass flux normal to the boundaries is zero. The (normal mean)
velocity within the domain vanishes ð�vz ¼ 0Þ, and the momentum equation reduces to one of ‘‘hydrostatic’’
balance
@zT zz ¼ �ðg þ �czÞq ¼ �geffq; ð12Þ
where the effective gravity is geff ¼ g þ �cz. This is the same as that of a normal stratified gas, with Tzz replaced
by the gas pressure P, and geff by g. The momentum equation can be integrated directly by using the general
relation Tzz = bq�zz = (q�zz)/sp
dT zz

T zz
¼ � geffq

T zz
dz ¼ � geffsp

�zz
dz;
giving
qðzÞ ¼ qð0Þ �zzð0Þ
�zzðzÞ

exp �sp

Z z

0

geff

�zz
dz

� �
: ð13Þ
This is a general reformulation of the momentum equation and will therefore also account fully for turbopho-
resis via the variation of the diffusivity �zzðzÞ ¼ spð2Ez þ �kzzÞ with height.

A solution of the problem in terms of q(z) will require solving the stress equation for Ez. In the stationary
case with zero mass flux, the stress equation reduces to
2bqEz ¼ @zðq�zz@zEzÞ þ q�lzz: ð14Þ
Combining this with the momentum equation gives a single equation for Ez, in the form of the non-linear
second order equation
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2b2Ez þ geff@zEz � ð2Ez þ �kzzÞ@2
z Ez ¼ b�lzz: ð15Þ
The two required boundary conditions are chosen as the two endpoint values of the normal stress Ez. A solu-
tion is obtained by linearization and Newton–Raphson iteration. The linearized differential equation corre-
sponds to a tridiagonal matrix equation which is easy to implement numerically. The initial guess can be
taken as the homogeneous value, ðEzÞhom ¼ ð�lzzÞhom=ð2bÞ.

The solution procedure then starts with solving Eq. (15) for the kinetic stress, by providing two boundary
conditions. The integral form of the momentum equation (13) can then be solved with a boundary condition
for the density (e.g., the lower endpoint value).

2.4. Equilibrium dispersion tensors in stationary turbulence

The long time equilibrium dispersion tensors are obtained by assuming that the time since release of the
particle into the flow is sufficiently long such that the initial particle momentum has no influence. The particle
has then reached an ‘‘equilibrium’’ with the background flow. This is reasonable a few mean free paths v0sp

away from the boundaries, where v0 is the characteristic particle injection velocity at the boundary (in our
case, v0 is the velocity boundary condition for the PT-scheme).

2.4.1. Tensor components for the 1D stationary case

The (z,z) component of the velocity averaged dispersion tensors are
�lzzðzÞ ¼ hDvzðz; tÞf 0z ðz; tÞi; ð16Þ
�kzzðzÞ ¼ hDzðz; tÞf 0z ðz; tÞi; ð17Þ
�czðzÞ ¼ �hDxjðz; tÞ@xj f

0
z ðz; tÞi ¼ �hðDxðz; tÞ � rÞf 0z ðz; tÞi: ð18Þ
The displacements Dvz and Dz now refer to all particle trajectories arriving at z irrespective of their velocity
(note that in the stationary case the dispersion tensors do not vary with time). This form is sufficient for cal-
culating the dispersion tensors directly from the PT simulations. However, to gain more insight we need to
express the dispersion tensors explicitly in terms of the correlation function of the fluctuating force. Green’s
function for the displacement Dz, considering drag only, is
gðt; sÞ ¼ b�1ð1� e�bðt�sÞÞ; ð19Þ
where s is the source time. The displacement due to the random force is the accumulated effect over the particle
path
Dxj ¼
Z t

t1

f 0j ðz; t; sÞgðt; sÞds: ð20Þ
The accumulated velocity from the same random force is
Dvj ¼
Z t

t1

f 0j ðz; t; sÞ _gðt; sÞds; ð21Þ
where _gðt; sÞ ¼ e�bðt�sÞ. From these expressions, we obtain
�lzzðzÞ ¼
Z t

t1

hf 0z ðz; tÞf 0z ðz; t; sÞi _gðt; sÞds;

�kzzðzÞ ¼
Z t

t1

hf 0z ðz; tÞf 0z ðz; t; sÞigðt; sÞds;

�czðzÞ ¼ �
Z t

t1

hf 0j ðz; t; sÞ@xj f
0
z ðz; tÞigðt; sÞds;
where angle brackets enclose forms of the Lagrangian force correlation function (in the sense of following a
particle, and not a fluid element). Summation over the index j is performed in the expression for �cz. The force
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depends on the time s, and therefore on the particle path history. In homogeneous turbulence, it does not mat-
ter where the particle has been due to statistical homogeneity, and one can evaluate the dispersion tensors
exactly given a specific form of the temporal correlation function. One usually adopts an exponential corre-
lation function in the case of homogeneous turbulence,
hu0iðz; tÞu0jðz; t; sÞi ¼ huiujie�jt�sj=s; ð22Þ
with a spatially uniform correlation time s. One of the goals below is to evaluate the dispersion tensors in inho-
mogeneous turbulence where the particle paths have to be accounted for.

It is here appropriate to mention the influence of fluid shear on the dispersion tensors. With a constant
shear Sz,x = ozhuxi, the dispersion tensors in homogeneous turbulence are (e.g., Reeks, 1993, 2005)
ð�kijÞhom ¼ huiuji
ðbsÞ2

1þ bs
þ dx;isSz;xhujuzi

ðbsÞ3

ð1þ bsÞ2
;

ð�lijÞhom ¼
ð�kijÞhom

s
;

ð�ciÞhom ¼ 0:
We note that shear has no influence on the (z,z) components which are used in the 1D continuum equations.
We will assume that this also holds for a non-linear mean velocity profile (i.e., varying shear) in inhomogeneous

turbulence.

2.4.2. The passive scalar approximation (PSA) for �ci

The analysis of Swailes and Darbyshire (1999) and Reeks (1992), shows indirectly that in the passive scalar
limit (sp! 0), one can relate �ci directly to �kij, when we impose that the density should be constant in the limit
(‘‘well mixed condition’’). The well mixed condition will be accounted for in the PT-simulation by adding a
correction term to the Langevin equation to counteract spurious drift (Thomson, 1984).

In the limit sp! 0, the leading order terms in the momentum equation must balance, giving
q�vi ! qhuii þ spji; ð23Þ

where the velocity averaged diffusion current is
jiðx; tÞ ¼ �r � ðhDxf 0i iqÞ � �ciq ð24Þ

and where q approaches the density of passive tracers qf. Then, for known velocity and density of the passive
tracer, Eqs. (23) and (24) define an inhomogeneous differential equation relating �kij and �ci.

In the current case of zero mass flux (and zero mean fluid velocity) perpendicular to the walls, the z-com-
ponent of (24) reduces to
@xjð�kjzqÞ þ �czq ¼ 0:
In stratified, fully developed stationary turbulence, there is no variation of ensemble averaged quantities in the
horizontal plane such that @xð�kxzqÞ ¼ @yð�kyzqÞ ¼ 0, and in that case the following equation relates the two dis-
persion tensors:
@zð�kzzqÞ þ �czq ¼ 0: ð25Þ
If we further impose constant density (well mixed condition), the two dispersion tensors are directly related via
the equation
�cz ¼ �@z
�kzz: ð26Þ
In other terms, (26) is the condition to be imposed on the tensor components in question in the limit sp! 0 for
a well mixed 1D stationary flow with zero mass flux. I will use (26) as an approximation (PSA – passive scalar
approximation) also in the case of ‘‘light inertial particles’’ for which s/sp� 1 (small Stokes number). We note
that the PSA form accounts approximately for the gradient in turbulence intensity while the strict LHA form
does not.
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For further comparison to Swailes and Darbyshire (1999) and Reeks (1992), it is convenient to rewrite the
1D momentum equation as a diffusion equation expressing the different mass flux contributions. In the 1D
stationary case and for all sp, the perpendicular mass flux is generally
q�vz ¼ �spq
D�vz

Dt
� sp@zð2EzÞ � spqð@z

�kzz þ �czÞ � qspg � �zz@zq: ð27Þ
This diffusion equation is the 1D version of that in Reeks (1992) (his equation 77), except that gravity is added.
In the limit sp! 0 (or bs = s/sp� 1), �kzz !1 and �zz ! sp

�kzz approaches a finite value corresponding to the
fluid diffusivity. Thus
q�vz ! �spqð@z
�kzz þ �czÞ � sp

�kzz@zq ¼ �spð@z½q�kzz� þ q�czÞ; ð28Þ
which is consistent with (25) for zero mass flux. Finally, it is noted that Devenish et al. (1999) used a PSA-like
approximation also for higher inertia particles in inhomogeneous turbulence. Without giving a rigorous jus-
tification, they adopted a constant (characteristic) s = sf and the relation
�cz ¼ ��kzz@z ln r2
u; ð29Þ
(in the current notation with j ¼ ��cz). Here, ru is the normal component of the turbulence intensity. This rela-
tion is in fact a special case of (26), by adopting the LHA form of kzz with a constant s.

2.5. Particle tracking in Langevin turbulence

The vertical component of the linear equations of motion for a single massive particle is in general
_vðtÞ ¼ bfu½xðtÞ; yðtÞ; zðtÞ� � vðtÞg � g; ð30Þ
_zðtÞ ¼ vðtÞ; ð31Þ
where u is the vertical component of the background fluid velocity on the path [x(t), y(t), z(t)] of the particle. In
inhomogeneous turbulence, the statistics of u in terms of intensity ru and integral timescale s will vary with
position. In the current 1D problem, these parameters vary only with z. It is then not necessary to assign hor-
izontal coordinates [x(t),y(t)] to u, and the vertical component of the equation of motion is sufficient
information.

Following Iliopoulos and Hanratty (1999) and Mito and Hanratty (2002, 2005) the turbulent fluid velocity
u(z(t)) is modeled by the Langevin equation in the normalized variable Y(t) = u(z(t))/ru(z(t))
dY ðtÞ ¼ � Y ðtÞ
sðzðtÞÞ dt þ @zruðzðtÞÞdt þ dfðtÞ; ð32Þ

hðdfÞ2i ¼ 2

sðzðtÞÞ dt; ð33Þ
where df is white noise with variance h(df)2i. The signal u(z(t)) can be regarded as ‘‘colored’’ noise with a cer-
tain local correlation time s(z(t)) and local variance r2

uðzðtÞÞ. The drift term ozru dt is introduced to counteract
‘‘spurious drift’’ associated with Langevin turbulence modeling (Thomson, 1984). This ensures constant par-
ticle density in the passive tracer limit (sometimes referred to as the ‘‘well mixed condition’’).

The equations above are discretized according to the Adams–Bashforth scheme. For velocity and position a
second-order explicit Adams–Bashforth scheme is used. For the Langevin equation, the Adams–Bashforth–
Moulton third-order implicit scheme involving iterations is used. The iterations are stopped after 3–4 itera-
tions giving an accuracy better than second order, but worse than third order. The given timescale s(z) and
intensity ru(z) are sampled using linear interpolation at z(t).

Since the problem is defined to be stationary without inter-particle collisions, a single particle is followed
over a long period of time to obtain the necessary statistics. When the particle intersects one of the boundaries,
it is injected back into the domain with a velocity taken from a specific distribution. In this way, we ensure that
the mass flux at the boundaries as well as in the interior is zero. The domain is divided into bins of size Dz,
centered at positions zk. The number of occurrences in a certain bin k represents the particle concentration at
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zk. The mean velocity (zero in our case) and velocity variance (normal kinetic stress) as function of zk are
obtained by recording the velocities in bin k.

2.6. Specification of the fluid turbulence, normalization and parameter settings

The timescale s is neither the Lagrangian sL nor the Eularian sE integral timescale. In the absence of grav-
ity, Reeks (1977) shows that sL < s < sE with s approaching the Lagrangian timescale for sp! 0 and the Eule-
rian timescale for sp!1. When gravity is imposed, s may be smaller than sL since the particle transit time
over a ‘‘turbulent eddy’’ can be reduced. Csanady (1963) arrived at a formula for the particle diffusivity under
gravitational drift in a homogeneous turbulent medium. We will ignore this gravitational ‘‘crossing trajecto-
ries’’ effect in the current work, and simply assume the relation s ’ sL.

In order to derive an approximate relation for sL which relates to standard turbulence parameters, we first
consider the normal component of the passive scalar diffusivity in homogeneous turbulence
ð�zzÞh ¼ hu0zu0zisL: ð34Þ
We adopt this form locally in inhomogeneous turbulence, and propose in addition that (�zz)h ’ mT where mT is
the eddy viscosity. The applied formula is, therefore
sL ’
mT

hu0zu0zi
; ð35Þ
where one may adopt the algebraic eddy viscosity model of Biberg (2005). For single phase channel flow the
dimensionless Biberg eddy viscosity reduces to the Poiseuille form
mT ¼
jZð1� ZÞð1� 3Zð1� ZÞÞ

1� Zð1� ZÞ ; ð36Þ
where Z 2 [0,1] is the normalized coordinate between the walls, and j is von Kármán’s constant. For the nor-
mal component of the turbulent intensity ru ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
hu0zu0zi

p
, we will use the Altunbas� et al. (2002) formula for pipe

flow valid in the range 4 · 104 < Re < 5 · 105. In normalized form, this reads
ru ¼ 0:72½1� e�6:25Z þ 4:46
ffiffiffi
Z
p

e�7:49Z � ð37Þ
for Z 2 [0,1/2] (and a reversed profile for the remaining interval Z 2 [1/2, 1]). The resulting timescale
s � mT=r
2
u ð38Þ
is qualitatively similar to that used in the PT-simulations of Mito and Hanratty (2002, 2005) such that the
results below will be comparable to their work. We note that s can also be expressed in terms of ru and
the dissipation rate of turbulence energy (e.g., Mito and Hanratty, 2002). The accuracy of (38) is not very
important in the following, since we will be mostly concerned with the differences between kinetic theory
and the PT-data given the same parameters s and ru.

Following Mito and Hanratty (2005), the characteristic velocity is the friction velocity vc = v* and the char-
acteristic time scale is tc = m/(v*)2 where m is the kinematic viscosity of the carrier fluid. The characteristic
length scale is lc = vctc = m/v*. All quantities are normalized to these scales in the following, and the ‘+’ nota-
tion is omitted throughout. The parameter settings of Mito and Hanratty (2005) is applied, where the relax-
ation time is sp = 20 and the terminal velocity is gsp = 0.12. The injection velocity at the boundaries is V = ±1
(corresponding to a delta function distribution for velocities into the domain) to reproduce the Mito and
Hanratty-simulation. Once a particle hits the boundary from the interior, it is injected back into the flow with
V = +1 at the lower boundary and V = �1 at the upper boundary. The boundary is therefore not a purely
reflective one.

3. Results

In the regime of bs = s/sp� 1, all the dispersion tensors �c, �k and �l have significant impact on the contin-
uum equation solutions. Inaccurate estimates of these tensors can then lead to large errors. The local mean
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free path
ffiffiffiffiffiffiffi
2Ez

p
sp in the bulk flow approaches zero in this regime and one might therefore expect that the LHA

form of the dispersion tensors would be a reasonable closure relation (e.g., Reeks, 1992). However, it is dem-
onstrated below that this is not necessarily the case.

It is interesting that in the opposite regime of high inertia particles, bs� 1, one can neglect �c and �k in com-
parison to �l and inaccurate estimates of �c and �k may be irrelevant for the final result2 (recalling that in this
case the LHA form of these dispersion tensors should be invalid due to the larger particle mean free path). In
that case, however, we expect that the Chapman–Enskog closure relation for the energy flux breaks down, and
the final results may still be in error for this reason.

There will be a zone near the boundaries where the particles relax from the injection condition to the back-
ground turbulence. To ensure that the use of long-time dispersion tensors is a valid approach, the KT contin-
uum equations are solved between two internal boundaries, a few mean free paths away from the injection
points in the PT-simulation. The density and kinetic stress from the PT-simulation are taken as boundary con-
ditions for the continuum equations. See Fig. 1. In particular, the two endpoint values of kinetic stress are
used for Eq. (15). The lower endpoint value of the density is taken as a boundary condition of the integral
form of the momentum Eq. (13). With the timescale s defined above, we work in the regime bs =
s/sp 2 [1, 5], with the smaller ratio near the boundaries of the continuum calculation.
3.1. PSA versus LHA for �cz

In LHA, one simply adopts the homogeneous form of the dispersion tensors
2 In
ð�kzzÞhom ¼ huzuzi
ðbsÞ2

1þ bs
;

ð�lzzÞhom ¼
ð�kzzÞhom

s
;

ð�czÞhom ¼ 0;
where spatially local values of huzuzi and s are inserted. The smooth thick lines in the left panel of Fig. 2 shows
the continuum solutions for density (concentration) and normal stress using the homogeneous forms of the
dispersion tensors. The thin jagged lines are the corresponding ensemble averages from the particle simulation.
It is seen that the concentration profile from kinetic theory is in severe error, indicating an imbalance in the
momentum equation due to the LHA form �cz ¼ 0.

The particle kinetic stress (thick line in the right panel in Fig. 2) fits the PT results quite well, suggesting that
the LHA form of �lzz is sufficiently accurate. We note that �lzz provides the source in the kinetic stress equation
(15). The dashed line shows the locally homogeneous approximation for the kinetic stress, resulting from
ignoring the energy flux (the Chapman–Enskog closure relation). The corresponding result is virtually indis-
tinguishable from the KT-result (thick line), showing that there is a near balance between generation and dis-
sipation of kinetic energy. One should note that the magnitude of the Chapman–Enskog term depends on the
concentration (density) gradient and the particle relaxation time, and should not be neglected a priori. Fur-
thermore, we expect that this term can be more significant for particles with larger relaxation time (sp/
s � 1 or larger), and in particular in boundary layers where there are strong gradients in turbulence intensity
of the fluid.

In Fig. 3, the PSA form of �cz is used
ð�czÞPSA ¼ �@zð�kzzÞhom;
keeping the LHA forms ð�kzzÞhom and ð�lzzÞhom. It is evident from the figure that the concentration profile is im-
proved, giving a better prediction of the PT result, but it is still not fully satisfactory.

From the right panel in Fig. 3, we see again that the solution for the kinetic stress is acceptable. The
remaining discrepancy in concentration must then be attributed to inaccuracy in ð�kzzÞhom or to the fact that
this regime, the Liouville equation reduces to a Fokker–Planck equation.



Fig. 3. The PSA form of �cz is applied in the momentum equation. The LHA form of �kzz and �lzz is kept. The line styles coding and the
physical parameters are the same as for Fig. 2.

Fig. 2. Concentration and normal stress using LHA dispersion tensors. Mito and Hanratty case with sp = 20, Vt = 0.12. Thin full lines:
Ensemble averaged PT-simulation. Thick lines: continuum equations. Z is the normalized coordinate between the walls. Left panel:

Normalized concentration profiles. Dashed line: First order approximation corresponding to the mean density scale height. Right panel:

Normal stress v0zv
0
z. Dashed line: Locally homogeneous approximation (ignoring the Chapman–Enskog energy flux).
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the PSA-relation is only approximate. In the next section it is shown that the PSA holds, while the exact �kzz

evaluated from the PT-simulation differs from ð�kzzÞhom.
3.2. Direct evaluation of the dispersion tensors �kzz and �lzz using PT-data

The dispersion tensor component �kzz is in general given by the ensemble average
�kzzðzÞ ¼ hf 0z ðz; tÞDzðz; tÞi; ð39Þ
where Dz is the displacement of the particle due to the turbulent force. This can be evaluated directly in the PT
simulation by recording the force f 0z on the particle when it passes the evaluation point z. The displacement
Dz(t) = z � z(t0) is recorded by measuring the particle position at time t0 which should be chosen such that
t � t0 is much larger than the characteristic fluid integral timescale schar that the particle experiences along
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the path. Only the force within the time interval t � t0 6 schar will contribute significantly to the portion of the
displacement which correlates to f 0z . Similarly, the dispersion tensor component �lzz is in general given by
Fig. 4.
The th
panel:

corresp

Fig. 5
�lzzðzÞ ¼ hf 0z ðz; tÞDvðz; tÞi; ð40Þ
where Dv(z, t) is the recorded change in velocity.
The upper two panels in Fig. 4 show the resulting dispersion tensors. The crosses show �kzz and the triangles

show �lzz as functions of Z. The thin lines show the locally homogeneous versions (LHA) which are necessarily
symmetric about the midpoint of the domain. For later use in the continuum equations, the evaluated disper-
sion tensors where fitted with smooth functions (fits to the crosses and triangles). These fits are also shown in
Fig. 4. The most notable feature is that �kzz deviates significantly relative to the LHA version with a pro-
nounced skew towards the upper boundary, while �lzz does not deviate very much from the LHA version.

The smooth fits to the PT-evaluated �kzz and �lzz are then inserted into the continuum equations to generate
solutions which should match the PT-data. Again, the PSA-relation for �cz is adopted. The corresponding
results are compared to the PT-data in Fig. 5. It is clear that the concentration profile is improved compared
Dispersion tensors evaluated from PT-data. Upper panels: The crosses (left) show �kzz and triangles (right) show �lzz as functions of Z.
in lines show the locally homogeneous versions (LHA) and smooth functional fits to the evaluated dispersion tensors. Lower left

The ratios ½�kzz�PT=½�kzz�LHA and ½�lzz�PT=½�lzz�LHA are plotted to further evaluate the quality of the smoothed fits (thin lines denote the
onding smoothed fit ratio). Lower right panel: The ratios ½�kzz=�lzz�PT and ½�kzz=�lzz�LHA ¼ sðzÞ.

. PSA for �cz with �kzz and �lzz calculated from the PT-data. The line styles and the physical parameters are the same as for Fig. 2.
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to Fig. 3, where the LHA value of �kzz was used. The kinetic stress from the continuum equation is still accept-
able, although we see a few percent under-prediction relative to the PT-data (right panel). In this respect, we
note that the kinetic stress depends on both �kzz and �lzz (cf. Eq. 15) such that a significant change of �kzz may also
affect the kinetic stress.
3.3. The non-local nature of �kzz and the particle diffusivity �zz

The most important results above are that the LHA version of �lzz is a good approximation, while the LHA
version of �kzz is not. This can be understood by considering the differences in the Green’s functions for dis-
placement and velocity. As shown previously, the component �kzz is proportional to the integral of
hu(z, t)u(z(s), s)ig(t; s) over the time parameter s < t (recalling that f 0z ¼ bu). Since g ! 0 for s! t with 1/e time
equal to sp, and s/sp� 1 in the current regime, it is the ‘‘effective’’ correlation time schar of hu(z, t)u(z(s), s)i
which determines the support of the integrand along the time axis. These considerations are further illustrated
in the left panel of Fig. 6, which shows the contributions to the dispersion tensors at normalized height
Z = 0.3. The parameters were again sp = 20 and Vt = 0.12.

In the case of �lzz, the integrand in question is huðz; tÞuðzðsÞ; sÞi _gðt; sÞ where _gðt; sÞ ! 0 for increasing js � tj,
again with 1/e time equal to sp. In the same regime (s/sp� 1), it is then the shorter particle relaxation time sp

(rather than schar) which defines the time support of the integrand (right panel of Fig. 6). In the case studied,
the corresponding averaging volume is sufficiently small that �lzz is close to the LHA-value.

The correlation function hu(z, t)u(z(s), s)i depends on an average measure of s(z) and ru(z) over a volume
spanned by the particle paths converging onto the evaluation point z. In 1D, the corresponding interval
D(t � s) (say, defined by the RMS spread of the paths) is time dependent and shrinking as illustrated in
Fig. 7. One would expect that if D(schar) > lturb where lturb is the characteristic length scale of the turbulence
parameters (ru and s), then �kzz is sensitive to turbulence inhomogeneity. A rough criterion for when the LHA
form of �kzz is valid may then be derived by adopting the long-term dispersion formula in homogeneous
turbulence
Fig. 6.
simula
correla
Dashe
unity w
�kzz (lef
inhom
Dðz; t � sÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�zzðzÞðt � sÞ

p
: ð41Þ
Contributions to the dispersion tensor integrands at Z = 0.3. Thin line: Velocity correlation function hu(z, t)u(z(s),s)i from the PT-
tion, as a function of the time difference (s � t) normalized to sp. This correlation function is characterized by the ‘‘effective’’
tion time schar. The dash-dot line shows the exponential exp(�(t � s)/s(z)) with local integral timescale s(z) at the evaluation point.

d line: Weight corresponding to the particular Green’s function in question. Note that for large jt � sj the weight for �kzz approaches
hile the weight for �lzz approaches zero. Thick line: Integrand (Green’s function weight times the velocity correlation function) for

t panel) and �lzz (right panel). It is seen that �kzz is more dependent on the particle path history (and therefore turbulence
ogeneity) than �lzz.



Fig. 7. A few selected particle paths conditional on intersection at the particular evaluation points z = 0.15,0.55,0.85. Thick white lines:
Corresponding mean path. Time is here in units of sp.
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If we use the locally homogeneous diffusivity �zz ’ r2
us, the suitable ‘‘LHA criterion’’ D(schar)� lturb translates

to rus� lturb (or leddy� lturb). With our definition of s, this criterion can also be written mT� rulturb.
In the limit sp! 0 corresponding to passive tracers co-moving with the fluid-particles, the contribution

to diffusion from kinetic stress vanishes and the particle diffusivity �zz approaches the value of the fluid
diffusivity �F
�zz ! sp
�kzz ! �F ¼

Z t

�1
huðz; tÞuðzðsÞ; sÞids ¼ huðz; tÞDzfðz; tÞi; ð42Þ
where Dzf is the displacement corresponding to a realization of a fluid trajectory z(s). We note that this integral
form is identical to the expression for the classical fluid diffusivity in homogeneous turbulence (e.g., Taylor,
1921; Kraichnan, 1970). In inhomogeneous turbulence, it is clear that even the fluid diffusivity �F depends
on the turbulence characteristics in the volume surrounding the evaluation point. Thus, a locally homoge-
neous approximation for the fluid diffusivity, such as r2

uðzÞsðzÞ ¼ �f , may not be a valid substitute for �F in
(42) in inhomogeneous turbulence.

4. Mass flux balance

Mito and Hanratty (2005) tested the widely used diffusion equation model
vdq� �f@zq ¼ 0 ð43Þ
against PT-simulations, where vd is a general drift velocity (terminal velocity plus turbophoretic drift). A local

approximation to the fluid diffusivity �f(z) was regarded as a good approximation to the actual particle diffu-
sivity, although this may not be justified in inhomogeneous turbulence even for passive tracers as shown
above. These authors found an imbalance between the mass flux terms when these were evaluated using
PT-data. One is therefore led to the conclusion that such a model cannot fully capture the physics of the prob-
lem. This is an important observation since this type of phenomenological model is still widely used in
applications.

The diffusion equation built on the KT continuum momentum equation reads
spq@zv0zv0z þ spq@z
�kzz þ �zz@zqþ qgeffsp ¼ 0: ð44Þ
Within the PSA, the additional term in @z
�kzz cancels �cz in geff. After dividing (44) by density, and invoking

PSA, we obtain the drift velocity balance



Fig. 8. Left panel: Local approximation to the fluid diffusivity (dots) and kinetic theory particle diffusivity (dash-dots). Middle and right

panels: Drift velocities in the diffusion Eq. (45), with sp = 20 and Vt = 0.12. Thick lines: residual after adding all drift velocity
contributions. Dashed line: diffusive velocity ��zzoz(ln(q)). Full line: turbophoresis �sp@zv0zv0z. Full straight line: settling velocity �gsp.
Middle panel: The terms �sp�cz (dash-dots) and �sp@zð�kzzÞ (dots) cancel due to the adopted PSA-relation leading to (45). Right panel: The
balance from using the local fluid diffusivity rather than the particle diffusivity. Only the diffusive velocity is altered (dashed line).
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�gsp � sp@zv0zv0z � �zz@z ln q ¼ 0: ð45Þ
We recognize �gsp as the terminal velocity (gravitational drift velocity) and ��zzozlnq is the drift velocity asso-
ciated with turbulent diffusion. The turbophoretic drift velocity is �sp@zv0zv

0
z. The difference between (45) and

the phenomenological diffusion equation (43) lies only in the diffusivity when vd includes turbophoretic drift.
The left panel in Fig. 8 shows the local fluid diffusivity �f ¼ r2

uðzÞsðzÞ (dotted line) and the particle diffusivity
�zz ¼ spð2Ez þ �kzzÞ (dash-dotted line) with �kzz evaluated from the PT-data. The middle panel shows the drift
velocity balance in (45) when using the non-local particle diffusivity �zz. Note that this balance is ‘‘exact’’ in
the sense that it is consistent with the PT-results as shown above. The right panel shows the balance when
the local fluid diffusivity �f is applied, keeping all other quantities unchanged (altering only the diffusive flux).
The thick line shows the corresponding residual or imbalance in the equation.

The difference between a local approximation of fluid diffusivity and the inherently non-local particle dif-
fusivity may resolve the issue raised by Mito and Hanratty (2005), where a local fluid diffusivity was found to
be insufficient. These authors adjusted the diffusivity so as to minimize the residual in the mass flux balance.
Their adjusted diffusivity (as displayed in their Fig. 17 for the lower half of the domain) is reduced relative to
the fluid diffusivity, similar to the curve in Fig. 8 (left panel).
5. Discussion and conclusions

This work evaluates the applicability of approximate closure relations (dispersion tensors) in the kinetic
theory of Reeks (1992) for particles suspended in inhomogeneous turbulence. The reference dispersion tensor
components �kzz and �lzz are evaluated using particle tracking (PT) based on a Langevin model for turbulence
(e.g., Thomson, 1984 or Iliopoulos and Hanratty, 1999). Fully developed turbulent flow between two horizon-
tal walls is considered. The concentration and particle kinetic stress (normal stress) obtained from the contin-
uum equations is in agreement with the PT-data when the reference dispersion tensors are used.

For particles with small inertia, s/sp� 1 (such that the particle relaxation time sp is typically smaller than
the local correlation time s of the fluid turbulence as seen by the particles), the locally homogeneous approx-
imation (LHA) for the dispersion tensor �kzz does not necessarily hold. This result is in contrast to the common
view that the LHA-form is valid for low Stokes numbers when the relaxation time is small. In particular, the
profile of �kzz as function of z is skewed upwards (against gravity), while the LHA version is symmetric due to
the underlying turbulence intensity profile. The value of �kzz depends on the two-point correlation between the
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fluid velocity at the evaluation point z and the fluid velocity sampled by the particle before it intersects the
evaluation point. If the characteristic correlation time schar is significant (considering all particle paths in
the ensemble), then �kzz is sensitive to the non-local turbulence statistics, and it will deviate from the LHA
value. In contrast, �lzz is close to the LHA value, since the relevant timescale is now the smaller relaxation time
sp < schar which enters into the velocity displacement Greens function. Only turbulence statistics in the imme-
diate neighborhood of the evaluation point can then contribute to �lzz.

By requiring constant density in the limit of passive tracer particles (sp! 0), it was shown that the body
force due to the dispersion coefficient �cz is related to �kzz by �cz ¼ �@z

�kzz. This defines a ‘‘passive scalar approx-
imation’’ (PSA) which may be used as an approximation for �cz in the current regime s/sp� 1. The concen-
tration profile obtained using this approximation is in excellent agreement with the PT data. In the
intermediate regime, s/sp � 1 one should expect that the PSA no longer holds, so that the general form of
the momentum equation should be kept to account for the imbalance between �cz and @z

�kzz. In this case, �cz

should be evaluated independently from �kzz.
By considering the diffusion form of the momentum equation, it is demonstrated that the particle diffusivity

�zz ¼ spð2Ez þ �kzzÞ should be applied and not the local fluid diffusivity. This supports the result of Mito and
Hanratty (2005), where the effective diffusivity �* applied in the standard phenomenological diffusion equation
vdq � �*ozq = 0 to match the PT-data, does not correspond to the local fluid diffusivity. Even in the passive
tracer limit (of zero relaxation time) the fluid diffusivity sp

�kzz is not necessarily equal to a local approximation
of the fluid diffusivity (say, represented by eddy viscosity).

Section 2.3 describes how the kinetic continuum equations can be solved for a fully developed channel flow.
The fluid normal stress and the timescale s is provided as input to these equations, while the normal kinetic
stress of the particles, the particle diffusivity and the particle density profile are output quantities. For the
current case of light particles (sp/s� 1), the dispersion tensor component �kzz can be evaluated a priori using
particle tracking simulations, while �lzz and �cz can be evaluated using the LHA-approximation and the
PSA-approximation, respectively. An upcoming paper will discuss the properties of the theory for different
particle inertia in the same channel flow configuration.
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